Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 3): 127985, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949263

RESUMEN

The 20-kDa accessory protein (P20) from Bacillus thuringiensis subsp. israelensis (Bti) has been identified as an essential molecular chaperone in the enhancement of Cry11Aa and Cyt1Aa toxins production and their bio-crystallization. Additionally, P20 plays a vital role in suppressing the toxic effect of Cyt toxin on the host bacterium and also enhances insecticidal activity of Cry1Ac protein. Thus, the function of P20 is more specific than that of the chaperones. However, P20 is poorly investigated and insufficiently characterized. In the present study, we recombinantly expressed p20 from local isolate Bti ISPC-12 in heterologous bacterium E. coli and P20 protein was purified to homogeneity. Detailed biochemical and biophysical characterization provides crucial insights about in-vitro behavior as well as spatial conformations of P20 protein. Further, structural modelling and analysis provides insights into three-dimensional organization of the protein and shows that P20 is a non-toxic member of cytolytic (Cyt) toxin family similar to Cyt1Ca, with presence of conserved cytolysin fold. Additionally, solution scattering reveals that P20 is present as a dimer in the solution and probable dimeric assembly of P20 is presented. The findings reported here reveal engaging facts about P20 thereby advancing our understanding about this protein, which will expedite future studies.


Asunto(s)
Bacillus thuringiensis , Bacillus thuringiensis/química , Endotoxinas/química , Toxinas de Bacillus thuringiensis/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/química , Proteínas Hemolisinas/química , Chaperonas Moleculares/metabolismo
2.
Insect Biochem Mol Biol ; 164: 104045, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040266

RESUMEN

Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.


Asunto(s)
Antitoxinas , Insecticidas , Xenorhabdus , Animales , Insecticidas/metabolismo , Xenorhabdus/genética , Proteínas Bacterianas/metabolismo , Insectos/metabolismo , Antitoxinas/metabolismo , Péptidos/metabolismo
3.
Insect Biochem Mol Biol ; 162: 104014, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778713

RESUMEN

PirAB binary toxin from Photorhabdus is toxic to the larvae of dipteran and lepidopteran insect pests. However, the 3-D structures and their toxicity mechanism are not yet fully understood. Here we report the crystal structures of PirA and PirB proteins from Photorhabdus akhurstii subsp. akhurstii K-1 at 1.6 and 2.1 Å, respectively. PirA comprises of eight ß-strands depicting jelly-roll topology while PirB folds into two distinct domains, an N-terminal domain (PirB-N) made up of seven α-helices and a C-terminal domain (PirB-C) consists of ten ß-strands. Despite the low sequence identity, PirA adopts similar architecture as domain III and PirB shared similar architecture as domain I/II of the Cry δ-endotoxin of Bacillus thuringiensis, respectively. However, PirA shows significant structural variations as compared to domain III of lepidopteran and dipteran specific Cry toxins (Cry1Aa and Cry11Ba) suggesting its role in virulence among range of insect pests and hence, in receptor binding. High structural resemblance between PirB-N and domain I of Cry toxin raises the possibility that the putative PirAB binary toxin may mimic the toxicity mechanism of the Cry protein, particularly its ability to perform pore formation. The mixture of independently purified PirA and PirB proteins are not toxic to insects. However, PirA-PirB protein complex purified from expression of pir operon with non-coding Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences found toxic to Galleria mellonella larvae with LD50 value of 1.62 µg/larva. This suggests that toxic conformation of PirA and PirB are achieved in-vivo with the help of ERIC sequences.


Asunto(s)
Mariposas Nocturnas , Photorhabdus , Animales , Photorhabdus/química , Proteínas Bacterianas/química , Endotoxinas , Larva , Insectos , Proteínas Hemolisinas
4.
Int J Biol Macromol ; 242(Pt 4): 124979, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245748

RESUMEN

Cry11Aa is the most potent mosquito larvicidal protein of Bacillus thuringiensis subsp. israelensis (Bti). Development of resistance against insecticidal proteins including Cry11Aa is known but no field resistance was observed with Bti. The phenomenon of increasing resistance in insect pests necessitates the development of new strategies and techniques to enhance efficacy of insecticidal proteins. Recombinant technology offers better control over the molecule and allows modification of protein to achieve maximal effect against target pests. In this study, we standardised protocol for recombinant purification of Cry11Aa. Recombinant Cry11Aa found active against larvae of Aedes and Culex mosquito species and LC50 were estimated. Detailed biophysical characterization provides crucial insights into stability and in-vitro behaviour of the recombinant Cry11Aa. Moreover, trypsin hydrolysis doesn't improve overall toxicity of recombinant Cry11Aa. Proteolytic processing suggests domain I and II are more prone to proteolysis in comparison to domain III. Significance of structural features for proteolysis of Cry11Aa was observed after performing molecular dynamics simulations. Findings reported here are contributing significantly in method for purification, understanding in-vitro behaviour and proteolytic processing of Cry11Aa which could facilitate in efficient utilisation of Bti for insect pests and vectors control.


Asunto(s)
Aedes , Bacillus thuringiensis , Insecticidas , Animales , Bacillus thuringiensis/química , Endotoxinas/química , Proteolisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/química , Mosquitos Vectores , Insecticidas/farmacología , Insecticidas/metabolismo , Larva/metabolismo , Aedes/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/química
5.
Toxicon ; 218: 40-46, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36096207

RESUMEN

Txp40 is a ubiquitous toxin from Xenorhabdus and Photorhabdus bacteria, exhibits insecticidal activity against a wide range of insect pests belonging to Lepidoptera and Diptera orders. Initially, Txp40 affects midgut of the target insect and further damages some other tissues like fat bodies but the detailed mode of action is not known. Txp40 shares no significant sequence match to any proteins with known structure or function, suggesting that it is a novel type of insecticidal toxin. Here, we report purification, toxicity and biophysical characterization of the Txp40b toxin from X. nematophila (ATCC, 19061). The recombinant Txp40b was found toxic to Galleria mellonella larvae with LD50 of 30.42 ng larva-1. Circular dichroism spectroscopy revealed that purified Txp40b is an α-helix rich protein with a relatively lower melting temperature of 45 °C. In-silico model generated suggests two domain structure of Txp40b toxin. Detailed structural analysis of Txp40b will provide new insights about the mode of action and possibly it would illustrate a new domain and/or motif in the area of insecticidal proteins.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Photorhabdus , Toxinas Biológicas , Xenorhabdus , Animales , Proteínas Bacterianas/química , Insectos , Insecticidas/química , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Photorhabdus/metabolismo , Toxinas Biológicas/metabolismo , Xenorhabdus/química
6.
J Invertebr Pathol ; 194: 107829, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36167186

RESUMEN

Photorhabdus insect related proteins A & B (PirA, PirB) from Photorhabdus and Xenorhabdus bacteria exhibit both oral and injectable toxicity against lepidopteran and dipteran insect pest. The pirA, pirAt (encoding 6 N-terminal truncated PirA), pirB genes, pirA-pirB (with ERIC sequences), pirA-pirB-mERIC (modified pirA-pirB with mutated ERIC sequences) and polycistronic-pirAB were cloned and expressed in Escherichia coli. However, PirA protein was expressed in insoluble form and therefore the pirA gene was modified to produce PirAt. Moreover, pirA-pirB-mERIC, polycistronic-pirAB and co-transformed pirA/pirB genes were not expressed in the studied prokaryotic expression systems. None of the single purified proteins or mixtures of the individually expressed and purified proteins were toxic to mosquito larvae of Aedes aegypti and Culex quinquefasciatus. However, PirA-PirB protein mixtures purified from pirA-pirB operon plasmid were toxic to A. aegypti and C. quinquefasciatus larvae with LC50 values of 991 and 614 ng/ml, respectively. The presence of ERIC sequences between the two orfs of the pirA-pirB operon could help to obtain the proteins in biologically active form. Further, results confirm that PirA-PirB proteins of P. akhurstii subsp. akhurstii K-1 are binary insecticidal toxins and ERIC sequences could play an important role in expression of Pir proteins. Reports of biophysical characterization of individually purified PirAt, PirB and expressed PirA-PirB toxin mixture could provide the structural insight into these proteins.


Asunto(s)
Toxinas Bacterianas , Photorhabdus , Xenorhabdus , Animales , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Escherichia coli , Proteínas de Insectos/metabolismo , Larva/metabolismo , Photorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...